Diazidobis $(\eta$-cyclopentadienyl)titanium

By E. Rodulfo de Gll, Marcela de Burguera and A. Valentina Rivera
Departamento de Quimica, Facultad de Ciencias, Universidad de Los Andes, Merida, Venezuela
and Perry Maxfield
Centro de Petroleo y Quimica, IVIC, Caracas, Venezuela

(Received 14 September 1976; accepted 2 October 1976)

Abstract

C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}\left(\mathrm{N}_{3}\right)_{2}\), orthorhombic, Pnma, $a=$ 7.879 (5), $b=12.169$ (8), $c=12.046$ (8) À, $U=1155$ $\AA^{3}, Z=4, D_{x}=1.51 \mathrm{~g} \mathrm{~cm}^{-3}$. The structure was solved by Patterson methods and refined to an R of 0.072 for 456 unique diffractometer data. The molecule is bisected by a mirror plane. The $\mathrm{Ti}-\mathrm{N}$ distance is 2.03 (1) \AA.

(a)

(b)

Fig. 1. The molecule of diazidobis(cyclopentadienyl)titanium. (a) Bond lengths. (b) Bond angles. Standard deviations are in parentheses.

Introduction. The chemistry of coordinated azides has received attention within the last decade. As a consequence, the crystal structures of several azide derivatives of transition metals have been determined. This work reports the first X-ray investigation of a coordinated azide of Ti .

Preparation of the title compound from aqueous solution has been reported by Langford \& Aplington (1965) and Coutts \& Wailes (1971). In this investigation the crystals were prepared by a different method with a non-aqueous solvent. A mixture of 0.8 g of $\mathrm{Bu}_{3} \mathrm{SnN}_{3}, 0.25 \mathrm{~g}$ of $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiCl}_{2}$ and 15 ml of toluene

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ with standard deviations in parentheses

	x	y	z
Ti	$1637(5)$	2500	$-265(2)$
$\mathrm{N}(1)$	$1021(16)$	$1282(8)$	$-1337(9)$
$\mathrm{N}(2)$	$1683(20)$	$792(8)$	$-2058(10)$
$\mathrm{N}(3)$	$2251(19)$	$307(8)$	$-2732(10)$
$\mathrm{C}(11)$	$717(44)$	2500	$1617(19)$
$\mathrm{C}(21)$	$74(31)$	$1589(14)$	$1125(17)$
$\mathrm{C}(31)$	$-1052(26)$	$1907(13)$	$351(17)$
$\mathrm{C}(12)$	$4355(30)$	2500	$-1139(15)$
$\mathrm{C}(22)$	$4259(21)$	$1526(10)$	$-475(12)$
$\mathrm{C}(32)$	$4095(22)$	$1906(10)$	$662(12)$

Table 2. Anisotropic temperature factors $\left(\AA^{2} \times 10^{3}\right)$ with standard deviations in parentheses

The temperature factor exponent takes the form:

U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$52(2)$	35 (2)	33 (1)	0	6 (2)	0
76(11)	66 (7)	70 (8)	-21(6)	-2 (6)	-4 (6)
100 (10)	46 (7)	74 (8)	-14 (5)	2 (9)	-13 (9)
127 (14)	83 (9)	105 (10)	-52 (8)	29 (9)	-20 (8)
141 (31)	234 (38)	49 (15)	0	34 (16)	0
121 (19)	102 (15)	93 (14)	26 (10)	45 (14)	6 (13)
74 (16)	159 (16)	118 (12)	-19 (11)	31 (11)	-46 (9)
74 (17)	99 (15)	73 (14)	0	6 (12)	0
96 (15)	108 (11)	70 (13)	13 (8)	0 (9)	22 (9)
82 (18)	105 (10)	74 (9)	8 (7)	-12 (8)	14 (7)

was heated at $60^{\circ} \mathrm{C}$ for 1 h . Evaporation gave orangered crystals (0.25 g) which were recrystallized from toluene-heptane. Composition: calculated for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{Ti}$: C 45.3, H 3.4, N 31.7\%: found: C 45.39, H 3.58, N 31.4\%.

The crystals are prismatic and moderately air sensitive. A crystal $0.15 \times 0.20 \times 0.35 \mathrm{~mm}$ was mounted in a Lindemann capillary in an argon atmosphere. Lattice parameters and integrated intensities were measured on a Norelco Pailred diffractometer with graphite-monochromatized Mo K K radiation. 2323 reflexions with $2 \theta<45^{\circ}$ were measured and averaged after application of an Lp correction to give 456 unique reflexions with $I>3 \sigma(I)$. The structure was elucidated by Patterson and Fourier methods. Atomic positions and thermal parameters were refined by full-matrix least squares. Complex neutral-atom scattering factors were employed, and the weighting scheme was $w=$ $1 / \sigma^{2}(F)$. The refinement, with anisotropic thermal motion and an anomalous-dispersion correction for Ti , converged to $R_{w}=\Sigma w^{1 / 2} \Delta / \Sigma w^{1 / 2}\left|F_{o}\right|=0.062$ and $R=0.072$. No absorption corrections were made. Final atomic coordinates and thermal parameters are given in Tables 1 and 2, and the bond lengths and angles in Fig. 1.*

Discussion. The structure consists of discrete molecules with m symmetry. The coordination around the Ti atom is distorted tetrahedral with $\mathrm{N}(1)-\mathrm{Ti}-\mathrm{N}\left(1^{\prime}\right) 94 \cdot 1$; $\mathrm{N}(1)-\mathrm{Ti}-\mathrm{CtCp}(1)$ (Ct centroid, Cp cyclopentadienyl) $105.5 ; \mathrm{N}(1)-\mathrm{Ti}-\mathrm{CtCp}(2) 106 \cdot 6$; and $\mathrm{CtCp}(1)-\mathrm{Ti}-$ $\mathrm{CtCp}(2) 132.2^{\circ}$.

The bent $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Ti}$ moiety is similar to those found in $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{4} \mathrm{Ti}$ (Calderon, Cotton \& Legzdins, 1969),

[^0] Santo, 1971), $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{TiS}_{5}$ (Epstein, Bernal \& Köpf, 1971) and $\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)_{3} \mathrm{Ti}$ (Lucas, Green, Forder \& Prout, 1973). The two cyclopentadienyl rings are in staggered configuration with the Ti atom 2.06 and $2.03 \AA$ from $\mathrm{CtCp}(1)$ and $\mathrm{CtCp}(2)$ respectively. The $\mathrm{Ti}-\mathrm{C}$ distances are in the range $2 \cdot 35-2 \cdot 39 \AA$ and the $\mathrm{C}-\mathrm{C}$ distances 1.34-1.45 A.

The N_{3} ligand is linear within experimental error. The $\mathrm{N}-\mathrm{N}$ distances are $1 \cdot 10(2)$ and $1 \cdot 18$ (2) \AA; the longer distance is closer to the $\mathrm{Ti}-\mathrm{N}$ bond. The angle $\mathrm{N}(2)-\mathrm{N}(1)-\mathrm{Ti}$ is $137(1)^{\circ}$. This geometrical arrangement is similar to those present in the equivalent $\mathrm{M}\left(\mathrm{N}_{3}\right)_{2}$ portion of $\left.\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{~N}_{3}\right|^{2+}$ (Palenik, 1964), [1,2-bis(diphenylphosphinato)ethane $] \mathrm{Cu}_{2}\left(\mathrm{~N}_{3}\right)_{2}$ (Gaughan, Ziolo \& Dori, 1971) and $\left[\mathrm{Pd}_{2}\left(\mathrm{~N}_{3}\right)_{6}\right]^{2-}$ (Fehlhammer \& Dahl, 1972).

We thank the CONICIT of Venezuela for financial support. The calculations were performed on the Universidad de Los Angles IBM 360/40 computer with programs written by G. M. Sheldrick.

References

Calderon, J. L., Cotton, F. A. \& Legzdins, P. (1969). J. Amer. Chem. Soc. 91, 2528-2535.
Coutts, R. S. P. \& Wailes, P. C. (1971). Aust. J. Chem. 24, 1075-1078.
Epstein, E. F., Bernal, I. \& Köpf, H. (1971). J. Organomet. Chem. 30, 229-245.
Fehlhammer, W. P. \& Dahl, L. F. (1972). J. Amer. Chem. Soc. 94, 3377-3382.
Gaughan, A. P., Ziolo, R. F. \& Dori, Z. (1971). Inorg. Chem. 10, 2776-2778.
Kocman, V., Rucklidge, J. C., O’Brien, R. J. \& Santo, W. (1971). Chem. Commun. p. 1340.

Langford, C. H. \& Aplington, J. P. (1965). J. Organomet. Chem. 4, 271-273.
lucas, C. B., Green, M., Forder, R. A. \& Prout, K. (1973). Chem. Commun. pp. 97-98.

Palenik, G. J. (1964). Acta Cryst. 17, 360-367.

[^0]: * A list of structure factors has been deposited with the British Library Lending Division as Supplementary Publication No. SUP 32170 (3 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CHI 1NZ, England.

